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ABSTRACT 

It is shown that the equations f o r  the motion of a tagged fluid 

par t ic le  in a random wave field define a singular perturbation problem, 

character ized by a non-uniformity a t  l a rge  t imes .  The uniformly 

valid asymptotic expansion to this problem, the Eu le r  - Lagrange 

relationship for  random dispersive waves,  is obtained. 

application of these general  resul ts ,  an integral  representat ion of the 

solution is worked out f o r  the case of vertically propagating random 

acoustic waves in an isothermal  a tmosphere.  

non-uniformity of mediums leads to a wave generated diffusion p rocess .  

The t ime and length sca les  over  which the process  is diffusive a r e  

determined,  and a formula for  the diffusion coefficient is presented.  

A s  an 

It is shown that the 



CHAPTER I 

INTRODUCTION 

F r o m  the ea r l i e s t  studies of Taylor") and Richardson(2),  it has  

been known that the s ta t is t ics  of the motion of tagged fluid par t ic les  in 

a turbulent velocity field a r e  c?f central  importance in theories of turbulent 

diffusion. 

( B a t ~ h e l o r ' ~ ) ) ,  o r  mixing length theory used ( T a y l ~ r ' ~ ) ) ,  l i t t le can be 

sa id  about the process  of turbulent diffusion without understanding this 

problem. One way to phrase the problem i s  to  ask fo r  the relationship 

between the Euler ian s ta t is t ics  of the turbulent velocity field (which a r e  

measu red  a t  a fixed spat ia l  point), and the Lagrangian s ta t is t ics  of the 

tagged par t ic le  (which is moving with the fluid).  This question is known 

a s  the Euler  - Lagrange problem. 

a re  due to L ~ m l e y ' ~ ) ,  who gave a c l ea r  and general  formulation to the 

problem, and Lumley and Corrsin"), who studied a s imple model of the 

problem as i t  applies to homogeneous isotropic turbulence. 

Unless s imi la r i ty  considerations may be brought to b e a r  

Recent contributions to  the l i t e ra ture  

This paper  presents  a general  solution to the problem, when the 

velocity field may be considered composed of random dispers ive waves.  

I t  might s e e m  remarkable  that such a general  solution ex is t s .  However, 

t h e r e  i s  a growing l i t e ra ture  of very  general  resul ts  fo r  flows which may 

b e  considered (to some approximation) a s  composed of random dispers ive 

waves .  Among these resul ts  a re  those of Benny and Saffmann(7), who 

showed that if the wave modes were weakly coupled to  each other ,  there  



- 2 -  

always exists a uniformly validGaussian closure scheme 

scheme,  applied to water  waves,  leads to a Boltzmann-like equation 

when the waves a r e  viewed a s  particles18), H ~ u l t ( ~ )  has given a simple 

rule for  distinguishing random dispers ive waves f rom strongly coupled 

turbulence (that i s ,  a turbulence in which each eddy sca t t e r s  on another 

before i t  travels one eddy length sca i e ) .  Hasselmann ( lo )  has  shown 

that in dealing with the various weak nonlinear wave-wave interactions,  

one i s  led to a formal i sm very  s imi l a r  to that of quantum e lec t ro-  

dynamics.  

the waves (electrons) a r e  weakly coupled to the photons with which 

they interact  . 

This 

That is not surpr is ing,  because,  in quantum electrodynamics 

I t  is  typical that these resul ts  a r e  all based on some f o r m  of 

perturbation theory, where the sma l l  pa rame te r  measu res  the depar tures  

f r o m  a l inear  theory.  

mean slope of the surface;  fo r  quantum electrodynamics,  i t  is the fine 

s t ruc ture  constant. 

perturbation theory. However, the method used  h e r e  differs signifi- 

cantly f rom past approaches.  

the method of realizations.  F o r  each realization of a random wave 

field, the actual t ra jectory of the tagged par t ic le  is calculated.  In one 

simple case ,  presented in  section V ,  an  integral  representat ion of one 

such solution is derived. 

position to  the statist ics of the random sources  of the wave field.  

the present  method, one must  der ive,  a s  an  intermediate  s tep ,  

F o r  water  waves,  the small pa rame te r  is the 

The present  problem is a l so  a problem in singular 

The present  approach might be called 

This representat ion re la tes  the par t ic le  

Using 
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what amounts to a complete solution to the problem, before S U L  physica 

useful resul ts  a s  diffusion coefficients can be obtained. We believe that 

i t  is the nonergodic property of random dispers ive waves which leads to 

such an approach. 

In the next section (See Sec. 11) the problem is pit in non- 

dimensional form,  and the appropriate sma l l  parameter  is defined. A 

naive attack on the problem fails because the resul ts  a r e  not uniformly 

valid fo r  large t imes .  In Section 111, the exact solution to a simple 

one -dimensional example i s  presented. This resul t ,  properly interpreted,  

shows that the difficulty is due to a s t reaming motion generated by the 

wave f ie ld .  Section IV gives the general  theory for  a r b i t r a r y  random 

wave f ie lds .  

gives a one-dimensional example of the general  theory.  

random internal  waves in an isothermal  a tmosphere a r e  diffusive over 

cer ta in  length and t ime sca l e s .  A formula i s  obtained fo r  the diffusion 

coefficient of this wave field. 

The general  theory reduces to  the simple example.  Section V 

It is shown that 
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CHAPTER I1 

DISCUSSION O F  THE PROBLEM 

Let  times be measured by a character is t ic  period of the wave 

If the wave field, T, and lengths by a character is t ic  wave length A e 

field has  a character is t ic  velocity A ,  then 

A T  & = X  

is supposed to ba a sma l l  l a r a m e t e r .  If this were  not s o ,  then each 

mode would be strongly sca t te red  by other modes of the wave field, and 

i t  would not be possible to physically distinguish random dispers ive 

waves.  In short ,  the problem is physically consistent only i f  E i s  

Thus the problem to be solved is a nonlinear, stochastic s e t  of 

total differential  equations, which has  the fo rm 

4 

44  dx 
dt 
- _  - & u(x, t ) .  

4 

Here x is the nondimensional position of the fluid par t ic le ,  t is t ime,  
4 

and u i s  the nondimensional velocity f ie ld ,  whichhas a z e r o  mean value.  

The simplest  approach, which may be called l inear  theory,  is to  

suppose the departures of x f r o m  an equilibrium position x(t=O) a r e  

smal l .  The asymptotic expansion corresponding to this idea is 
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Substitution into equation (1) yields 

The difficulty with this approach is that the t ime average of 

is non z e r o  f o r  anisotropic wave f ie lds .  (A simple example of this 

fact is discussed in the next section. ) 

oscil late about some mean value which grows with t ime, the ra te  of 

This implies  that  x2 will 

growth being proportional to the t ime average of ( 3 ) .  

Thus, as t 4 a, x2 is not bounded. The expansion (Eq.  2 )  is 

not valid fo r  la rge  times. It can be shown, by the methods which 

follow, that the method of linearizing the equation (1) of motion 

l eads  to c o r r e c t  resul ts  only when the wave field is isotropic.  This 

is a se r ious  disadvantage, because most  physical systems which 

cons is t  of weakly coupled random waves a r e  anisotropic,  and tend 

towards isotropy very  slowly, if a t  a l l .  
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CHAPTER I11 

A SIMPLE EXAMPLE 

The simplest  example which exhibits the difficulties discussed in 

the previous section is that of the displacement due to a wave with a 

single frequency. The equation to be solved is 

- -  d x  - E cos( t  - x), x( t  = 0)  = 0 dt ( 4 )  

This equation has  an exact solution which resu l t s  f r o m  the quadrature:  

t - x  

= t. d S  s 1 - E cos 5 
0 

Evaluation of the integral  gives 

r 1 
2 

1 tan-l L - E sin(t-x) J = t  -c-F cos(t-x) - E 
( 5 )  

To understand what this resu l t  implies ,  we expand the r e su l t  in the l imi t  

E - 0 ,  with t and x a rb i t r a ry .  The resu l t ,  af ter  a r a the r  long 

calculation, is 

1 2  1 2  1 2  3 
2 

s in  2(t  - E t) t O ( E  ) x w  E t t E s i n ( t -  E t) - - E 
4 

>;< 
The most  remarkable  f ea tu re  of this expansion is the s teady drift ,  

2 with nondimensional velocity, 1 / 2  E , in the posit ive x direction. We 

'k In the theory of water  waves,  this s t reaming motion is known as the 
mass t ranspor t  effect. It was discovered by G .  G. Stokes (1847) Trans .  
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Camb. Phil. SOC. ,  8, pp. 441 and has  recent ly  been studied by Longuet- 
Higgins, MS (1953) Fhi l .  Trans .  A . ,  245, pp. 535 and (1960) J. Fluid 
Mech. ,  8, pp. 293. These investigations a r e  significantly different, in 
method, f r o m  present  analysis.  
analyzing non-random finite amplitude waves, and Longuet-Higgins showed 
that near  the f r e e  surface of the water ,  viscous f o r c e s  ignored by Stokes, 
mus t  be taken into account. None of the extensive l i t e ra ture  on this effect  
is concerned explicitly with the effects of random waves, o r  the Euler -  
Lagr  ang e p r  ob1 em. 

- 
Stokes discovered the dr i f t  while 

may understand this dr i f t  in the following way. If x is increasing, the 

period of cos(t-x) (in Eq. 4) is slightly g rea t e r  than 2 r .  Likewise, if x is 

decreasing,  the period of cos(t-x) is slightly l e s s  than 2 r .  Hence the 

par t ic le  spends slightly m o r e  t ime moving in the direction of increasing x 

than in the direction of decreasing x. This r e su l t s  in a drift  in the 

direction of increasing x. 

If the wave had the f o r m  cos(t t x), the drift  would be in the 

negative x direction. The drift  is caused by small changes in phase due 

to changes in x; i t  is in  the direction of the phase velocity of the wave, 

in  this s imple example. 

Now consider E to be a small  random number,  with ze ro  mean. 

Then equation (6) represents  the resu l t  of one real izat ion of the random 

process .  

as a dr i f t  with mean velocity < > superimposed upon random 

oscil lations with amplitude b .  

Considering the ensemble of all E ,  the motion can be descr ibed 

1 

Here,  < > denotes an ensembler  average. 

The non uniformity which invalidates the use  of l inear  theory is 

s imply due to the s t reaming motion generated by the wave field.  

Perhaps  a physical discussion of these r e su l t s  i s  warranted he re .  

Suppose that the velocity field described by equation (4) is the velocity 

of a water  wave at the surface of the water .  Suppose that the wave is 

generated by the oscil latory motion of a wave maker  a t  the end of a long 
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wave tank. 

according to equation ( 6 ) ,  the wave maker would slowly drift ,  with a 

velocity of magnitude - E t imes the wave maker  velocity, in the positive 

x direction. In a r e a l  wave tank, the wave maker  is fixed, but 

observations we have made in the M .  I. T. random wave tank (11) show 

that away from the tank walls there  i s ,  in fact ,  a streaming motion of 

the co r rec t  magnitude and direction, a s  predicted in equation (6) ,  on the 

f r e e  surface of the tank. There is a counterflow in the boundary l aye r s  

on the walls of the tank. The r e a l  point of our discussion is not that a 

simple,  one dimensional theory can accurately predict  the dr i f t  

velocity observed, but r a the r  that such s t reaming motions a r e  a genera l  

feature  of random dispers ive wave fields. 

Then, assuming that the motion is exactly one dimensional, 

1 
2 
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CHAPTER IV 

THE GENERAL THEORY 

The basic  idea needed to solve equation (1) is a method of 

separat ing the d r i f t  motion f r o m  the oscil latory motion. 

we f i r s t  notice that drift  occurs on a t ime scale  T = E t ,  whereas  

the oscillations occur  on a time scale  of t .  

two variable expansion is required(12).  

oscil latory t e r m s  in equation ( 6 )  have a slow modulation, on a t ime 

sca le  T .  Finally, the solution, x( t ,  T),  viewed a s  a function of two 

var iables ,  has  the following properties:  a )  i t  is expandable in a 

power s e r i e s  in E ,  b) x(t ,  T) remains bounded in the l imit  t -a , 
T fixed. 

To do this,  

2 

This suggests that a 

Notice a l so  that the 

These general  features  may be clarified by realizing that the 

position of a tagged par t ic le  in a velocity field composed of a s u m  of 

oscil latory modes will  certainly oscillate with a t ime scale  of a 

typical period of a typical mode. 

some mean position, which, according to equation ( 6 ) ,  m a y  drif t  with 

t ime.  However, each individual oscillation has  an  amplitude of o rde r  

E ,  according to equation (1). 

oscillations (a t  a f ixedmean position) a r e  bounded in t ime.  

is the same as  statement b .  

of amplitude E a r e  of o rde r  E . This is  the justification of s ta tement  

a.  

This oscillation will  occur  about 

If dr i f t  i s  ignored (T fixed), the 

This 

The amplitude correct ions to oscillations 

2 
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-+ 4 4  - . . +  a -+-+ 
U ( X ,  t) E u ( ~ 0 s  t)  t (X - x0) .  - u (x, t )  

a; 

These r emarks  se rve  to specify the f o r m  of the asymptotic 

t * e - 
4- 

x = x O  

e xpan s ion : 

( 7 )  
4 2 -  - 4 

x(t)  * x0 (ta T )  t E x1 (ta a) t E x2 ( t a  T )  t . - - 

Substituting these expansions into equation (1) and collecting like 

powers of E produces a h ie rarchy  of equations, the f irst  three of which 

a r e  given below: 

a% 
at= O 

1 x=xo 

The 0(1) and the O ( E )  equations yield 
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Hence the mean position of the par t ic le ,  xo, depends only on T, the 

t ime scale  f o r  d r i f t .  

position of the par t ic le .  

f ( T )  is a higher o r d e r  correct ion to the mean 

2 - To determine x the O ( E  ) equation must  be solved. Le t  g(T) be 0’ 

the t average of g(t, 7): 

t 

1 g(t ,  T )  dt g0 = lim 
t - a  t 
T fixed 0 

Now, using (8), ( 9 ) ,  and ( l o ) ,  the equation fo r  xo becomes 

4 I f  I 

The remaining t e rms  in equation (1 l) ,  which a r e ,  

-4 a UX2 

a t  - s and f ( 7 )  7 U ( X o ,  t )  , 
a xo 

a r e  z e r o  by virtue of the boundness of x2 in the t 

and because u (x 

a, T fixed, limit, 
4 4  

t )  has  zero mean value. 0’ 

Equation (9) and the solution to equation (11) a r e  in fac t  the 

general  solution to  the problem. An elementary calculation shows 

that i f  

u(x,  t )  = cos( t  - x), 
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1 
-2 T, 

T, and x - s in( t  - 1 - 
xo - z 1 -  then 

in agreement  with equation (6) .  
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CHAPTER V 

INTERNAL WAVES IN AN ISOTHERMAL ATMOSPHERE 

Before applying these resul ts  (Eq. 9 ,  11) to a specific 

2 case ,  it is necessa ry  to consider i f  any O ( E  ) effects due to the 

interaction between various modes of the velocity field a r e  likely 

to change the general  method. 

change in the power spectrum of the wave field ( ra ther  than coupled 

oscillations with a time scale T),  then i t  would be necessa ry  to 

include this slow variation in the velocity field. 

be taken account of, i f ,  in the formulae of Section IV, the velocity 

field u(x 

Section IV would remain valid. 

interaction which resul ts  in a slow modification of the power 

If such an interaction leads to  a 

This effect may 

t) is replaced by u(xo, t,  7 ) .  Then the equations of 0’ 
However, i t  is known (13) that the 

3 
spec t rum of deep water  waves with no surface tension is O ( E  ) .  

We shal l  a s sume  he re  that the s a m e  to be t rue fo r  internal waves 

in an is othe rmal a tmosphe r e .  

F o r  simplicity, we consider acoustic -gravity waves (14) 

propagating vertically upward in an isothermal  a tmosphere.  

dimensionalize with the scale height of the atmosphere,  and the 

Non- 

speed of sound. Then the velocity field has  the form(15)  (z being 

positive upward) 

dz z / 2  .i(kz - at) 
d t  - = E u(z,  t) = E 

WA - -  
I -  
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In equation (12), w 

value of 1 / 2  with the present  nondimensionalization ( t imes  a r e  measured  

by the t ime i t  takes a sound wave to propagate one scale  height). The 

sma l l  parameter  E is the rat io  of the fluid mloc i ty  in the wave to the 

speed of sound. 

The solution for z1 i s ,  assuming z(0)  = 0, 

is the acoustic cutoff frequency, which has a A 

F o r  waves in the upper a tmosphere E is about 1/10.  

02 ikz 
-11 -I- f ( T )  ( 13 ) 0 -iwt 

'0" -e dA(o) [ e  io 

J. 

Letting ( )*I* denote complex conjugate, equation (11) takes the 

following form: 

lim 
- t - a ,  

T fixed 

d z O  - -- 
dT 

1 
t 
- 1 

Now the t ime average of 

i(o' - w)t -e-iwt + e  

t 

0 

J. 

1 zo  (z t ik)  i (k-k ' )zo 
e dA(w)dA (w ' )  

d t [  "A 3: WA e i w  

has  the following proper t ies .  

t e r m  a r i s e s  f rom + e  

It is z e r o  i f  o # a'. If cd = a', the nonzero 

i(o' - w)t, and has  a value of t 1.  In this way we 
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obtain, (since dz /d-r is rea l ) ,  0 

The ver t ical  b a r s ,  1 ( ) , denote the absolute value of ( ) .  

The solution to  equation (14) is 

where the t ime for  a particle to dr i f t  f r o m  z = 0 to z = 03 is 

Now, f rom equation (13) and (15), the uniformly valid expansion fo r  

the motion of a single tagged particle,  for  one realization, is 

2 
t E f ( T )  2 t O ( &  ). 

(1 - T/TJ  

Clearly,  t imes of physical interest  a r e  much shor te r  than T ~ .  

This equation becomes, for  T / T ~  small, and ignoring the second o rde r  
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effects in the dr i f t  (the t e r m  in f ( T )  ), 

Physically, the par t ic le  dr i f ts  upward with a random dr i f t  

velocity. 

oscillations increase,  due to  the exponentially increasing amplitude 

of the acoustic wave. A s  t ime increases ,  the position of a par t ic le  

As the par t ic le  dr i f ts  upward, the amplitude of the par t ic le  

becomes more uncertain, due to the random dr i f t ,  and to the growing 

amplitude of the oscil latory motion. This means that the probability 

distribution of the par t ic le  becomes broader  as t ime inc reases .  

the process  has a dispers ive cha rac t e r .  

Hence 

If one models this dispers ive process  by a diffusion equation, 

To calculate the diffusion coefficient will  in general  va ry  with t ime.  

a diffusion coefficient, some assumptions about the s ta t i s t ics  of 

random amplitudes, A(o),  a r e  required.  

consis tent  with a Gaussian approximation, that  the ensemble average  

of t r iple  products of A(w) a r e  identically z e r o .  

amplitude of z grows a s  

F o r  the present ,  we suppose, 

Then the mean square  

2 2 < z ( t )  > = < ( T/T,) > t 
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2 Inspection of equation (16c) shows that < z ( t )  > fo r  shor t  t imes 

2 increases  a s  t , with oscillations on a time scale  of t .  It i s  

physically plausible that the diffusive charac te r  of wave field 

should be the resul t  of many such oscil lations.  On the other hand, 

in a physically meaningful p r m e s s ,  the part ic le  only drifts  a finite 

distance.  These r emarks  serve to define the diffusion l imit  of the 

wave field descr ibed by equation (12) :  T / T ~  -. 0,  t -c a. Diffusion 

occurs  on a time scale  such that 0(1) < t < O(4). On this t ime 

sca le ,  < z (t) > grows linearly with t ime,  
E 2 

, 

with a diffusion coefficient D, which has a value 

f f 2dA(w) dA* (w) > 

"A "A 

2 
W L "A "A -I 

D i s  s imply the mean dr i f t  velocity (the t e r m  in square bracke ts )  

t imes  the mean square  amplitude of the oscillations a t  T = 0 divided by 

the scale  height. 

to  have a diffusive charac te r  over length sca les  of a scale  height, and 

t ime sca les  of O ( 1 )  < t < o ( l / ~  ). 

The non-uniform medium causes  the s t reaming motion 

2 

This example se rves  to show how diffusion due to random dispers ive 

waves may  occur  when the medium is non-uniform. 

uniform, the exponential factor  in equation (12)  would be suppressed,  

If the medium were  
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there  would be only a random drift  with velocity equal to 

The motion would still be dispersive,  hut no diffusion limit would 

exis t  in this case.  

The expression obtained for  D, when put into dimensional units, 

gives a simple est imate  of the order  of magnitude of wave diffusion: 

Here  H is the scale  height. F o r  the ver t ical  diffusion coefficient in the 

atmosphere around 80 - 100 k m . ,  put 

X ver t ical  = 5 km, H = 8km. 

A - 20 c m / s e c  

4 T 10 sec  

5 2  Then D % 7 x 10 c m  / s e c .  This calculation may  give a simple 

explanation of the turbopause, fo r  the ra t io  of D to the molecular 

diffusion coefficient is one a t  about 110 km. , and is about 10 a t  90 km. 

Thus, upon this mechanism, sodium vapor trails r e l eased  f r o m  rockets  

would be diffused by waves below 110 k m . ,  and by molecular effects 

above 110 km. It should be carefully noted, however,  that, as most  of 

the random waves believed to exis t  in the 80 - 110 k m  region a r e  

internal gravity waves whose group velocity is upward, but whose phase 

velocity is downward, a fir11 3 dimensional calculation is requi red  to f ind 

the diffusivity of the wave field. Nothing in our s imple  model would 
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I 

indicate that for  a l l  types of waves, D need always be positive, o r  proves 

that the order  of magnitude estimate for  D associated with acoustic 

waves is the s a m e  as for  other random wave f ie lds .  

that one would in general  expect random wave fields in  a non-uniform' 

media to have non zero  diffusion coefficients, and that the present  simple 

example indicates that such diffusion coefficients may be la rge  enough to 

be geophysically important . 

The point is r a the r  
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